

VersionControl

SSHiSecureShellNotaversioncontral operatingnetworkservicessecurelyoveran
unsecurednetworkremote

SVNiSubversion Useslocalcopycanpushtoreposityand
downloadfromthat

ScpiSecureCopy Notaversioncentral waytosecurelycopyfilesfromanotherPCtransferacopyofAedile
Doesnotversiondefiles

SVN status sunstatus V
notunderversioncontrol µ 44 23 Harris barC MC acceptmine

A scheduledforadding A o barrc to accepttheirs

C conflict

D scheduledfordelete SVNCat examinefileconteto

Nl hasbeenmordified Pwd Printwork directy

Sunlog showmessage

Version
Controkcentraked mgiaf.fr

copy Cneedineerrey

Distributed cheap

branchingstrategies Nobranching
Production

main

Introduction toJava
ogrami codebeingran onacomputer

to complete atask

interpreted translateandexecutecodelinebylineeverytimewhenrun PythonJavascript

compiledtranslateallsourceonetimeC

Javacompiled interpreted

inJavaeveryprogrammust
havea classandamainmethod

Jecomposecode processofbreakingdowncodeintosmallertask

why toobigorcomplextoimplementatonce
somecodeisreuseble
workonteameasytodistributed
easytointerpreted

TimitiveVSObjectstypes

teb 8 111byamemory inti 4000114bytesmen charC x'i42byte float8256Fi114bytes booleanbookurge
rt 5 50,112bytesmemory lung16000000Lill8bytes chatCz 144403 doubled3.14159 118bytes 1by

bstractionand Decomposition

AbstractionbyParameterization eg defgcdc.mex
variables

Abstractionbyspecification specifywhatinputandoutputwilltakeandgive
withouthowthatoccurs

input output overloadginidiffparamv
black
bx diffreturntypex

MtHEEnewintEst ineA p2.3.47
Hen

Javamodifierscope
public

Protectedw
defaultur
privateV

InheritanceGenericsand Casey

dassAT 7 HI Usefinalkeywordtopreventoverriding
T I IHierarchical 1177

713 multi inheritance multiple
Hybrid

inheritance inheritance

ngle inheritance

heritonce

ymorphismistheabiligformobjecetotakemmyform

tnimalxnewca.ca objectype
virtualmethodInvocationiistleinvocationof0kcorrectoverridemethodwhichisI Referienavariable

bandmaeypeytleobjectinsteadofthereferencetype
ferienavariabletype

Inheritancecan override andonlypublicmethodcanbe inheritated

Anabstractmethodcanonlybeinabstractclass withoutimplementation

polymorphism egfoodbucky newtunac

override t overload sameparam differentreturn
Generic

Generics publicstatic a voidprintMeCT N why reducedtheriskofruntimeerrorand

Castingwhen movedown.aehierarchy
castyisrisky

errorsfampik
timeerrornotwithinthesamehierarchy

whatthdoallow atypeormethodoperate in
objectofvarioustypes

RuntimeerrorclasscastException whennotcornabout.aeinputtype

Javawillupcastauto
wemustdowncastmanually

esting Practices

whiteboxivalidityhighlyspecificpath
TWOwaysoftesty bladebox validaythewhat iscorrect

greyboxtestyitesterismadeawareoftheunderlying structurebuttestsfrom
outsidethecode

y de

IUnittesting validaysmallsectionsofcode
2Integrationtestyivaliduty components areworkytogether

iiai i Inn
TestDrivenDevelopmentTDD writewhatyouwouldtesttoensurethatyouwilleventuallymeettherequiverme
assertCexpectedactual

ObjectOriented DesignandExceptions

HMLUnified1111oddlylanguage f
behaviouralcasecasediagram

structural classdiagram

D inheritance
DinterfaceImplement

Exception an event
whichoccurswhen aprogram or

method behavesinamanor

beyond its normal flow
Trowable

Error Exception

0Throwexception upstreammethod

try catch

checked Exceptionimustbehandled ordeclared
otherwiseit causes compiletheerror

unchecked Noneedto handle wantcare
completimeerror

SOLID Design

Single responsibilityPrinciple iA classshouldhaveone
andonlyonereasontochange

pen closed principle
openforextendsimbueclosedformodfication

interfaelAbstracedassesshoudnuebe

modify

LiskovsubstitutmPrincipleiasqureshouldnererbeasub
greyrectngle

tortaasergregatn Principle
II'emempe

II'emempe

groom

Y t X x f
my lion pet lion

sleeper sleek groom steep

groom tgroom f
Muy
sleeper

pendeng inversion Principle
groom

Highlevdmodukshuudntdependmlowlevdmodnks.bucbo.ch

needtodependonabstracters

DLC System DevelopmentLifecycle

p Analsisy
Planning developaplanforcreatingtheconcept

J AnalsisiAnalyzetheneedsfatheplmusingthesystemGreat
detailedrequirement

planning Design Designitronsilatethedetailed requirements intodetaileddesignwark

T L Implementation Completetheworkydevelopiyardtesting
thesystem

Haintainana
Implementation

NlaintenomeiCompleteanyrequired
maintenancetokeepthesystemrunning

2waysto implement LS

spiral riskadverse
waterfall rigidhmel.ie
budgetAgileQualiyDeliverabkessmanagement

Evaluation
spiral Analysis

g.ggMoretimeisspent
agivephasebasedon

amountofriskthat planning Development

aseposesfortleproject

iraterfall subclassofspiral

cons thingschange

frequently timegeesqueezedekfurderprocoeshugepressure

ondevelopementteamtesyteam whyAgitecaeinup

3Agile subdassofspiral

RapidApplicationDevelopment RAD

firstattempttobreakawyfronwathfall

extremeProgramycxP

mostrigorousformyAgile
buildyaseriesoffeedbackloops

TheAgileManifesto

AgilevsWaterfall

Jesign Patterns

defi ageneraldescriptionofthesolutiontoawelldefinedproblemusinganarrangementof
classesandobjects

splitinthreemajorgroups
Creationat Patternsthatdealwiththemechanicsofobjectcreation

Structural Patternsthatdealwith creatysimplewaysofbraidingrelationshipsbetweenobjects
Behavioural Patternsthatdealwithcommoncommunion betweenobjects

Architectural

Pattern 1: Factory Method

Problem: Creating new objects often requires complex process that are not really
appropriate to expose to a client.
Motivation͗ We ǁant to trǇ and keep things as abstract as possible͕ don͛t eǆpose
instantiation logic to end user, use a common interface to refer to all similar objects
Applicability: Any time we have multiple ways of realizing the same concept ʹ and we want
our users to decide which implementation they want to use, but we do not want to expose
them to the nitty-gritty details

This code is messy, and needs
to use lots of copy paste!

Ocreational Patterns

why

why

when

<<interface>>
GenericObject

+method() : void

RealObjectOne

+method() : void

RealObjectTwo

+method() : void

ObjectFactory

+createObject(type:String) : GenericObject

Note: The Object factory
createObject method will return the
interface type, but using
polymorphism, will actually use the
specific object requested

[DEMO ʹ Shape Factory!]

Pattern 2: Builder

Problem: Telescoping constructors ʹ we have too many options for a constructor, that need
many different variables, we also need to remember the order of these
Motivation: We want to have a single way of initializing objects that is simple for the user to
follow, and still allows our objects to be immutable to avoid inconsistency
Applicability: If there are many potential ways to construct the same object, and sometimes
we will need many different constructors, this can be a good pattern to follow.

why

why

when

[NOTE: Demo this using a pizza!]

Pattern 3: Singleton

Problem: Sometimes we only want a single instance of an object
Motivation: either due to efficiency or due to real world behaviour, we only want a single
instance to ever exist of a specific object.
Applicability: Probably the most misused pattern! Should only be used for one of the above
two stated reasons. Often gets paired with Builder or Factory, in order to reduce memory
footprint on the JVM

why
why

when

[DEMO ʹ PrimeMinister]

Pattern 1: Adapter / Wrapper

Problem: Sometimes the objects we currently have do not match what our clients are
expecting, and we want to make something that can convert them into what is desired
Motivation: We want to be able to use already existing code as frequently as possible, and
sometimes we need to adapt it to plug into another persons code.
Applicability: When there is currently one or more interfaces that have things in a format
other than what we want, and we desire our clients to be able to use them

NOTE: There are two forms of this pattern ʹ a simple one, and a complex one -

StructuralPatterns

why

wy
when

Object Adapter (aka simple Adapter)

Put simply, the client wants to call something called methodA(), but the interface we
have calls it methodB;Ϳ͕ so ǁe make an adapter that let s͛ the client do ǁhat theǇ ǁant͘

Class Adapter (multiple Inheritance)

Pattern 1: Iterator

Problem: We want to be able to see the objects stored within an aggregator sequentially,
but do not want to expose the underlying representation
Motivation: Often there are algorithms for doing specific iterations on various different
types of container objects, and we want to decouple those algorithms from the container
itself.
Applicability: When we have an aggregator and want to iterate through the objects in it,
using an algorithm that is not container-specific.

0BehavioralPatterns

why

why

when

Pattern 2: Memento

Problem: We want to be able to revert to a previous version of an object if something goes
wrong
Motivation: When a client changes things, there may be potential that something else fails
because of that change, and they require to revert. Memento gives them this ability.
Applicability: When you have an object whose state may need reversion.

Architectural Patterns

Model View Controller (MVC)

This isn͛t reallǇ a ͞design pattern͟ in the traditional sense͕ bƵt it is an important topic͘
Architectural design helps create clean and consistently working code.

MVC dictates breaking the code into three key areas:
Model ʹ The models being worked on, usually mimics the structure of your data model.
This is also the layer that logic about the domain sit in.
View ʹ This is the output representation of information that the user interacts with.
Think the application screens or webpages
Controller ʹ Accepts inputs, and converts them to commands that are delegated to either
the model or view, or both.

The database,
including commands
and code interacting
with it

The Ƶser s͛
Interface (website,
GUI, command
prompt, etc.) The logic behind the

interface, that does
the work or the view
(the non-graphical
front end)

