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Pattern 1: Factory Method

Problem: Creating new objects often requires complex process that are not really 
appropriate to expose to a client.
Motivation͗ We ǁant to trǇ and keep things as abstract as possible͕ don͛t eǆpose 
instantiation logic to end user, use a common interface to refer to all similar objects
Applicability: Any time we have multiple ways of realizing the same concept ʹ and we want 
our users to decide which implementation they want to use, but we do not want to expose 
them to the nitty-gritty details

This code is messy, and needs 
to use lots of copy paste!

Ocreational Patterns
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<<interface>>
GenericObject

+method() : void

RealObjectOne

+method() : void

RealObjectTwo

+method() : void

ObjectFactory

+createObject(type:String) : GenericObject

Note: The Object factory 
createObject method will return the 
interface type, but using 
polymorphism, will actually use the 
specific object requested

[DEMO ʹ Shape Factory!]



Pattern 2: Builder

Problem: Telescoping constructors ʹ we have too many options for a constructor, that need 
many different variables, we also need to remember the order of these
Motivation: We want to have a single way of initializing objects that is simple for the user to 
follow, and still allows our objects to be immutable to avoid inconsistency
Applicability: If there are many potential ways to construct the same object, and sometimes 
we will need many different constructors, this can be a good pattern to follow.
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[NOTE: Demo this using a pizza!]



Pattern 3: Singleton

Problem: Sometimes we only want a single instance of an object
Motivation: either due to efficiency or due to real world behaviour, we only want a single 
instance to ever exist of a specific object. 
Applicability: Probably the most misused pattern! Should only be used for one of the above 
two stated reasons.  Often gets paired with Builder or Factory, in order to reduce memory 
footprint on the JVM

why
why

when



[DEMO ʹ PrimeMinister]



Pattern 1: Adapter / Wrapper

Problem: Sometimes the objects we currently have do not match what our clients are 
expecting, and we want to make something that can convert them into what is desired
Motivation: We want to be able to use already existing code as frequently as possible, and 
sometimes we need to adapt it to plug into another persons code.
Applicability: When there is currently one or more interfaces that have things in a format 
other than what we want, and we desire our clients to be able to use them

NOTE: There are two forms of this pattern ʹ a simple one, and a complex one -

StructuralPatterns

why

wy
when



Object Adapter (aka simple Adapter)

Put simply, the client wants to call something called methodA(), but the interface we 
have calls it methodB;Ϳ͕ so ǁe make an adapter that let s͛ the client do ǁhat theǇ ǁant͘  



Class Adapter (multiple Inheritance)



Pattern 1: Iterator

Problem: We want to be able to see the objects stored within an aggregator sequentially, 
but do not want to expose the underlying representation
Motivation: Often there are algorithms for doing specific iterations on various different 
types of container objects, and we want to decouple those algorithms from the container 
itself.
Applicability: When we have an aggregator and want to iterate through the objects in it, 
using an algorithm that is not container-specific.

0BehavioralPatterns
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Pattern 2: Memento

Problem: We want to be able to revert to a previous version of an object if something goes 
wrong
Motivation: When a client changes things, there may be potential that something else fails 
because of that change, and they require to revert.  Memento gives them this ability.
Applicability: When you have an object whose state may need reversion.
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Model View Controller (MVC)

This isn͛t reallǇ a ͞design pattern͟ in the traditional sense͕ bƵt it is an important topic͘  
Architectural design helps create clean and consistently working code.

MVC dictates breaking the code into three key areas:
Model ʹ The models being worked on, usually mimics the structure of your data model. 
This is also the layer that logic about the domain sit in.
View ʹ This is the output representation of information that the user interacts with. 
Think the application screens or webpages
Controller ʹ Accepts inputs, and converts them to commands that are delegated to either 
the model or view, or both.



The database, 
including commands 
and code interacting 
with it

The Ƶser s͛ 
Interface (website, 
GUI, command 
prompt, etc.) The logic behind the 

interface, that does 
the work or the view 
(the non-graphical 
front end)


