CSCBOY Einal Review

V@(S)'m Cm‘ﬁ’ll
« SSHt SCGATE ge”(Nota Vasih coriral) Opang mebwark Sorvices seasely overom vmsecued netwark (onot)
v SUN' Sublfarsioll - uses local copy, com push 40 Tepostey omdk. chown loaol frow thart

+ SCP Seawe Gy (Not. o visim carival) 3 Wy 19 seurely copyeesrm owodht- PC - Trms#r . Copg § e
Does ot virstm el

« S Status o SM Stetus -V
1 ot under versn ool M 4 33 Homs bec MC doept e
A schabuied fr dduy Ao * 1 borr. ¢ te acep dws
C (mficd
D shahled fr ek Sm @t ¢ e fll cre

P"d : ﬁ-‘lb werle A.m_(j
i {g D st mezge

Omtabeed - "nastc o (e, inbres
. ngs,‘m CW"Ml <pl'$""3w _n s;tu CILUID

M has beon madiied

Whj stieqes O No ey ———
@ Paducse
OL

Jnbodluctin & Jan

Fw\cfm‘. Code. bowg Ton 0N @ comput o mplet &t K
in«r'dd:imslaﬂwﬂ(oeut ok !mb)m,@m whtv 1L E‘]dm)j“'“”?fr

<wyilai: tmshtall suoa metme C

Jo compil -5 intopetal
in Jna_ ey pugon meot he o cliss ol 2 mr e

Decompor e pues by dpe col into swally sk

1 D00 hif i mpx to impltrart at. On2
“ﬁ @mtde.ismsd&’bd
@Wk"w";mﬁfodw

@mﬂ ® intepetad

frimtie. VS Ohjets P8

byte b= §; 71 bememy int i=ha Tabpes mem ChaY C =5 12byte float f 22S8F; J4byes blem bol=wue
short S =50,/ 2bytes menry g | =6000000L 3/ & bytas chor ¢, = "\uaps' duible d =3.1459 ; 1 byes 7/%

Ahsmwm omd Decm It

D Abstracan by fomometerotn o5 iy geACne) viab s
Ohbsinciin by Speciiotin’ spesty what inpuct ood aipt, wil tnke g wibt o i occzes

i ——;‘?——Wﬂfﬂ O’Ofloﬁ‘ N Am' 'J]w\m v

bx defb etin X
nt ngm it £s] ine. AD={123.4) ” UF’
Jnva. modanOr Scope
M\ic vvvV/

W\A/ v
Maull, 4

pl‘w, v

I'nhal‘(m&) Gewrics Cafj
A
'ﬁ% \\ s 3 }\; ‘Ufejwllt\al\m(ﬂremwg

‘E—% Hiemchionl

i mutéple
U%\; mlmw. - inhaitme &ll”(
shglc i

inhentr@

{’éjmplusl Pthe al;ilg/w« objag + talewn 7:7 V[‘m

]
e){WWO' o virtuel method Tnvocrtm . 25 6 inoctm #kmmw
T bgnmeorll bu n 60 4pe g dljee mtnddy o Trfoama ope

Mmmmbb.gpe
|/izt48yfs9n724n/k18dfnmay5v3
pstract Classes vs Interface
Abstract Class Interface

Supports multiple inheritance? NO YES
Can contain data members? YES NO
Can contain constructors? YES NO
Can contain implemented methods? YES NO
Can contain static methods? YEST NO
How is it used? Inherited Implemented

Why would we ever user interfaces?

“

o Inhgriena com overnice and @'f P,\ch methl co ke impevitated

¢ Aﬂ abﬁfrmm&w(cm w_ly be m obswact cluss witho fnylww-w

oplymephpm &), food fucky= new tinac)

« override % overfoad (Some poveon Aot resam X) Gongric:
* Genevics - P‘““’ stagic <T7 wd rthe (T X)}f @Wi“f' YEAWR! kn&k& wime gy,
0 ety
ermsC cumple eme emor: not withm do. soowe I»ermf) it % omins s
N\ Runtone onvr Cluss(as. Excephm (hon 0 o bt . it

Jwa. will wpas aue
we must glam st ma_ly

Code Stack Heap

Animal jen = new Lion() ;

jen.eat() ; _
jen.sleep() ; _
jen.roar () ;

Lion suzie = jen; /lﬁlass Cast Exceptionl =

|
((Lion) jen) .roar() ; contro{anp (,d
Mammal Joe o —gsryeseyn
i suzi i jert; of

A T 3
; - A
.roar () ; m Instance sleep() (€Override)
Anima jen*”" ks # o Lot

> s

@ ¢ i

Testn Practces
e box < ity by spegi o
Two wtﬁs? @}S<Wc bow, ki #he “whot” i3 cavect
q{g—bouesg L tosta 55 mdew &wdoyj somcne, bt toses. fran wtsA the wdle .

[+ Unit faso-‘vjj:vqlwlaj smll setans % o
2.11.&0-m4ﬂ;:?;w].'dlj Compoments Mw{«j ’ﬂvdm WM[b
3 %fim TG*): Tes¥) d 3500 mt/ﬁ gt spor MA&
4, Acceptme Test: Tesk dhort th fl o 35 ""'f] righe 4 a3 cym:l] specited.
Test v Mi%épw: wite. wht ot uodd ez 10 rswe that g wil] Gimamly reet . vepure~e

oAt (o
O-bje‘é Onawted Df{?” ong Elc?»n S

N M\M | C dr‘
——

— > inhertn
cee e D MO Jopltrsre-

Bicepet o oot whidh ocwns wien o pegimn o methd behwes ina ooy

bfﬂ)’Ml s norm J[W

Townbe
AN

b e
Othw evoepivn (@ upsteon meshed
@"- (wtch
heckel, Bepens st be. holed duckne othme e
(Mcb\fdleOM o Wdl wont cae cmpe e om

GRS u»ple £ o

SOLID Pesign

jyilﬂ)e Yeﬁlmgblj Prnuaple A s dould hwe one mA m‘jm reusm 4 chowe
O flo. gl i
okl
LI'SkW 5/‘55*-‘%"' ﬂl’na‘f@ a sqweswt(no¥ bea subjng Yertmg
] L] N fw| e)
Lo e omcpe 1%) - \/
s A X 7N
B +§ﬁ« s
;;:3: 1 groom 2

0
tsleept)
 qroom

b closed o mdfiosm — intexfue/Abstent, claves shoud Twe-be

%W&b"j myarsvn Bﬁ(u’yé
i loel madil. oot ol o ol e, b b
eed 4o ﬂfﬁd 0 obshocian.

SD)_(/ (Sjstem Deselopmont [[}ecjde)

Andlsis P‘Mﬁ: Aokl ‘fnmj #e antpt
/' \\ Analsis: AMBE the meeds 0&- Aulgb: Uusmg fhﬁsﬁm. (et detled ioas

P!gwj])/esgn D,’sjn . Towsilite the lesailed puionits it detsill. dlesgn ok
R YA lm‘;lcmmﬁm: CWFUZdtwk? pkw'or':] o {mj Hde am

Mointmome < (owrkfz o 77«021(maintnt 1o e o Systm mj

Swajg) :'fmyle)‘*t SDLS
o spiml = Tisk adv2
4 Wagafall- migid ﬁ-eln/bu{ya
) Aﬂile — auly Delivwae/fess momagemant
\\ s ,-ml Ardyss Evautom
— Mg bme 35 5|

on o ge phuse base on
fe oot ik G oy Dot
o o i

Z\WJ‘" (subcloss g erD

The waterfall process involves a large amount of upfront work, in an attempt to reduce the
amount of work done in later phases of the project. This makes it a sequential (non-iterative)
model. Phases are followed in order.

Requirements

coss = thgs
- - J"‘l""ﬁ e get ﬁfw“ th ol o hgepﬁm
o doelgornt tam 2y (o g oo <)

Time

2 et (xbdass% er)
O Ropid Agplceon Daclopnse. (RAD)
- (f.'ysf aitopt haﬂo\jdm Mﬂ*/’

v

The model as it was originally designed, splits work
into four phases:
1. Requirements Planning — Done by a group of "eg,“",:f‘;',‘fg""
business owners, technical leads, and system users.
Completed when all agree on what is being built

2. User Design — During this phase, users interact with c:
analysts and dev teams to rapidly prototype out
interfaces, and evolve what is being built
3. Construction — developers develop from what is
found in User Design phase, and iterate
4. Cutover — Testing is done here, final handover of
finished system

Beoeme Py)
— most "f“o""' #«47;@
- buildj & Sanes aofl—W Joops

Planning/Feedback Loops

Release Plan

Tteration Plan
Acceptance Test
Stand Up Meeting

ey
Pair Negotiation
am,
Unit Test
[y

Pair Progidmming

The Agile N fese
Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

gl vs Wy

Agile Waterfall
Iterative? Yes No

Late Changes? Yes No / $$$
Fixed timeline? No* Yes
Fixed Cost? No* Yes*

Volume of meetings Consistent Heavy up front, reduced middle,
heavy end
Release frequency Every Sprint Once per project
Business Involvement Heavy throughout Heavy early, and at very end

Cost to fix mistakes Low High

D@S{ﬂﬂ Pafﬂfrns
Ml a goméwa| Aesorptm % the solutm 10 aud dgfved froblenus_:y on amagewe of clisses ond objects

Split m thee myr groups:

(O Creotmal— Pugtams chott deal weh 8 me chooics ¢ olere Cretion

@) Sirictuaal- Poctorms. ot faal wbh vty simple was g iy vlksonships bemem oeces
@B@hﬂﬂml‘ PAWI'E fiut Al Wil Commen cowemuninctn hepwom objects

@ An,ﬁ(ecﬂml

(DOepdmal Vrtiorms

Pattern 1: Factory Method

Proghg'm: Creating new objects often requires complex process that are not really
appropqriate to expose to a client.

MotiVation: We want to try and keep things as abstract as possible, don’t expose
instapﬂgtion logic to end user, use a common interface to refer to all similar objects
App‘flcability: Any time we have multiple ways of realizing the same concept —and we want
our users to decide which implementation they want to use, but we do not want to expose
them to the nitty-gritty details

if (input.equals("SQUARE")){
System.out.println("Make a square”);
Square shape = new Square();
yelse if(input.equals("CIRCLE")){
Circle shape = new Circle();
}else if(input.equalsIgnoreCase("RECTANGLE")){
}J:Z?ngle shape = new Rectangle(); This code is messy, and needs

Object shape = new Object(); to use lots of copy paste!
¥

<<interface>>
GenericObject

+method() : void

7/
Zz

ObjectFactory

+createObject(type:String) : GenericObject

RealObjectOne

RealObjectTwo

+method() : void

+method() : void

[DEMO — Shape Factory!]

Note: The Object factory
createObject method will return the
interface type, but using
polymorphism, will actually use the
specific object requested

Pattern 2: Builder

;
Prom'm: Telescoping constructors — we have too many options for a constructor, that need
many different variables, we also need to remember the order of these

MoQﬂation: We want to have a single way of initializing objects that is simple for the user to
follow, and still allows our objects to be immutable to avoid inconsistency

Applicability: If there are many potential ways to construct the same object, and sometimes
we will need many different constructors, this can be a good pattern to follow.

Director

builder : Builder

construct()

.........

Builder

ConcreteBuilder

buildPart()

this.builder. busidPart(); ﬁ

[NOTE: Demo this using a pizzal]

buildPart{)
getResult() : Product

<< create >>

Product

Pattern 3: Singleton

i)
Prg‘mém: Sometimes we only want a single instance of an object
Md‘f‘l'ﬂ'ation: either due to efficiency or due to real world behaviour, we only want a single

instz;ggg to ever exist of a specific object.
Applicability: Probably the most misused pattern! Should only be used for one of the above

two stated reasons. Often gets paired with Builder or Factory, in order to reduce memory
footprint on the JVM

Singleton

- singleton : Singleton

- Singleton()
+ getinstance() : Singleton

[DEMO — PrimeMiinister]

(2) Stactaa] Rittams

Pattern 1: Adapter / Wrapper

Prg{‘b‘iem: Sometimes the objects we currently have do not match what our clients are
expecting, and we want to make something that can convert them into what is desired
Motivation: We want to be able to use already existing code as frequently as possible, and
sometimes we need to adapt it to plug into another persons code.

Applicability: When there is currently one or more interfaces that have things in a format
other than what we want, and we desire our clients to be able to use them

NOTE: There are two forms of this pattern — a simple one, and a complex one ©

Object Adapter (aka simple Adapter)

Adaptee
+methodB()
N
Client Adaptor
+adaptor: Adaptor +adaptee: Adaptee
+doWork () +methodA() ~

AN N

éééptor.methodA();B‘ adaptee.methodB():T

Put simply, the client wants to call something called methodA(), but the interface we
have calls it methodB(), so we make an adapter that let’s the client do what they want.

Class Adapter (multiple Inheritance)

Adapteel AdapteeN

+methodl () +methodN()

?_I_?

Client > Adaptor
+adaptor: Adaptor TethodA () <

+doWork () < \
s methodl ();
adaptor.methodA(); s

S methodN();

@Behovioal Puggams

Pattern 1: [terator

.
Prmem: We want to be able to see the objects stored within an aggregator sequentially,
but do not want to expose the underlying representation

MotiVation: Often there are algorithms for doing specific iterations on various different
types of container objects, and we want to decouple those algorithms from the container
itself, ..

App |cability: When we have an aggregator and want to iterate through the objects in it,
using an algorithm that is not container-specific.

Aggregate Iterator

<< Ccreate >>

+ jterator() + next()

+ hasNext()

ConcreteAggregate << create >> Concretelterator

.____________________________>

+ iterator() + next()

+ hasNext()

Pattern 2: Memento

Problem: We want to be able to revert to a previous version of an object if something goes

wrong
Motivation: When a client changes things, there may be potential that something else fails

because of that change, and they require to revert. Memento gives them this ability.
Applicability: When you have an object whose state may need reversion.

Originator

SetMemento(Memento m)
CreateMemento() 9

'

slate

H

Memento

GetState()
SetState()

state

retum new Memento(state)ﬁ

state = m->Getstale()ﬂ

memento | .

Architectural Patterns

Model View Controller (MVC)

This isn’t really a “design pattern” in the traditional sense, but it is an important topic.
Architectural design helps create clean and consistently working code.

MVC dictates breaking the code into three key areas:

Model — The models being worked on, usually mimics the structure of your data model.
This is also the layer that logic about the domain sit in.

View — This is the output representation of information that the user interacts with.
Think the application screens or webpages

Controller — Accepts inputs, and converts them to commands that are delegated to either
the model or view, or both.

The database,

— .
MODEL including commands
(W and code interacting
with it
UPDATES MANIPULATES
VIEW CONTROLLER
/ \ y
RN &
The user’s 0\ R4
Interface (website, d
GUI, command USER
prompt, etc.) The logic behind the

interface, that does
the work or the view
(the non-graphical
front end)

